Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
medrxiv; 2023.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2023.02.24.23286388

RESUMEN

Despite intensive studies during the last 3 years, the pathology and underlying molecular mechanism of coronavirus disease 2019 (COVID-19) remain poorly defined. Here, we examined postmortem COVID-19 lung tissues by spatial single-cell transcriptome analysis (SSCTA). We identified 18 major parenchymal and immune cell types, all of which are infected by SARS-CoV-2. Compared to the non-COVID-19 control, COVID-19 lungs have reduced alveolar cells (ACs), and increased innate and adaptive immune cells. Additionally, 19 differentially expressed genes in both infected and uninfected cells across the tissues mirror the altered cellular compositions. Spatial analysis of local infection rates revealed regions with high infection rates that are correlated with high cell densities (HIHD). The HIHD regions express high levels of SARS-CoV-2 entry-related factors including ACE2, FURIN, TMPRSS2, and NRP1, and co-localized with organizing pneumonia (OP) and lymphocytic and immune infiltration that have increased ACs and fibroblasts but decreased vascular endothelial cells and epithelial cells, echoing the tissue damage and wound healing processes. Sparse non-negative matrix factorization (SNMF) analysis of neighborhood cell type composition (NCTC) features identified 7 signatures that capture structure and immune niches in COVID-19 tissues. Trajectory inference based on immune niche signatures defined two pathological routes. Trajectory A progresses with primarily increased NK cells and granulocytes, likely reflecting the complication of microbial infections. Trajectory B is marked by increased HIHD and OP, possibly accounting for the increased immune infiltration. The OP regions are marked by high numbers of fibroblasts expressing extremely high levels of COL1A1 and COL1A2. Examination of single-cell RNA-seq data (scRNA-seq) from COVID-19 lung tissues and idiopathic pulmonary fibrosis (IPF) identified similar cell populations primarily consisting of myofibroblasts. Immunofluorescence staining revealed the activation of IL6-STAT3 and TGF-{beta}-SMAD2/3 pathways in these cells, which likely mediate the upregulation of COL1A1 and COL1A2, and excessive fibrosis in the lung tissues. Together, this study provides an SSCTA atlas of cellular and molecular signatures of fatal COVID-19 lungs, revealing the complex spatial cellular heterogeneity, organization, and interactions that characterized the COVID-19 lung pathology.


Asunto(s)
Fibrosis , Adenocarcinoma Bronquioloalveolar , Neumonía , Carcinoma de Células Renales , Fibrosis Pulmonar Idiopática , COVID-19
3.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.04.04.21253205

RESUMEN

Background: Current understanding of COVID-19 pathophysiology is limited by disease heterogeneity, complexity, and a paucity of studies evaluating patient tissues with advanced molecular tools. Methods: Autopsy tissues from two COVID-19 patients, one of whom died after a month-long hospitalization with multi-organ involvement while the other died after a few days of respiratory symptoms, were evaluated using multi-scale RNASeq methods (bulk, single-nuclei, and spatial RNASeq next-generation sequencing) to provide unprecedented molecular resolution of COVID-19 induced damage. Findings: Comparison of infected/uninfected tissues revealed four major regulatory pathways. Effectors within these pathways could constitute novel therapeutic targets, including the complement receptor C3AR1, calcitonin-like receptor or decorin. Single-nuclei RNA sequencing of olfactory bulb and prefrontal cortex highlighted remarkable diversity of coronavirus receptors. Angiotensin I converting enzyme 2 was rarely expressed, while Basignin showed diffuse expression, and alanyl aminopeptidase was associated with vascular/mesenchymal cell types. Comparison of lung and lymph node tissues from patients with different symptomatology with Digital Spatial Profiling resulted in distinct molecular phenotypes. Interpretation: COVID-19 is a far more complex and heterogeneous disease than initially anticipated. Evaluation of COVID-19 rapid autopsy tissues with advanced molecular techniques can identify pathways and effectors at play in individual patients, measure the staggering diversity of receptors in specific brain areas and other well-defined tissue compartments at the single-cell level, and help dissect differences driving diverging clinical courses among patients. Extension of this approach to larger datasets will substantially advance the understanding of the mechanisms behind COVID-19 pathophysiology. Funding: No external funding was used in this study.


Asunto(s)
COVID-19
4.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.09.25.20195818

RESUMEN

Background Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection in patients with Coronavirus Disease 2019 (COVID-19) prominently manifests with pulmonary symptoms histologically reflected by diffuse alveolar damage (DAD), excess inflammation, pneumocyte hyperplasia and proliferation, and formation of platelet aggregates or thromboemboli. However, the mechanisms mediating these processes remain unclear. Methods We performed multicolor staining for viral proteins, and lineage cell markers to identify SARS-CoV-2 tropism and to define the lung pathobiology in postmortem tissues from five patients with fatal SARS-CoV-2 infections. Findings The lung parenchyma showed severe DAD with thromboemboli in all cases. SARS-CoV-2 infection was found in an extensive range of cells including alveolar epithelial type II/pneumocyte type II (AT2) cells (HT2-280), ciliated cells (tyr--tubulin), goblet cells (MUC5AC), club-like cells (MUC5B) and endothelial cells (CD31 and CD34). Greater than 90% of infiltrating immune cells were positive for viral proteins including macrophages and monocytes (CD68 and CD163), neutrophils (ELA-2), natural killer (NK) cells (CD56), B-cells (CD19 and CD20), and T-cells (CD3{varepsilon}). Most but not all infected cells were positive for the viral entry receptor angiotensin-converting enzyme-2 (ACE2). The numbers of infected and ACE2-positive cells correlated with the extent of tissue damage. The infected tissues exhibited low numbers of B-cells and abundant CD3{varepsilon}+ T-cells consisting of mainly T helper cells (CD4), few cytotoxic T cells (CTL, CD8), and no T regulatory cell (FOXP3). Antigen presenting molecule HLA-DR of B and T cells was abundant in all cases. Robust interleukin-6 (IL-6) expression was present in most uninfected and infected cells, with higher expression levels observed in cases with more tissue damage. Interpretation In lung tissues from severely affected COVID-19 patients, there is evidence for broad SARS-CoV-2 cell tropisms, activation of immune cells, and clearance of immunosuppressive cells, which could contribute to severe tissue damage, thromboemboli, excess inflammation and compromised adaptive immune responses.


Asunto(s)
COVID-19 , Síndrome Respiratorio Agudo Grave , Tromboembolia , Adenocarcinoma Bronquioloalveolar , Trastornos de las Plaquetas Sanguíneas , Hiperplasia , Infecciones por Coronavirus , Inflamación
5.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.05.18.20099960

RESUMEN

BACKGROUND Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and its associated clinical syndrome COVID-19 are causing overwhelming morbidity and mortality around the globe, disproportionately affecting New York City. A comprehensive, integrative autopsy series that advances the mechanistic discussion surrounding this disease process is still lacking. METHODS Autopsies were performed at the Mount Sinai Hospital on 67 COVID-19 positive patients and data from the clinical records were obtained from the Mount Sinai Data Warehouse. The experimental design included a comprehensive microscopic examination carried out by a team of expert pathologists, along with transmission electron microscopy, immunohistochemistry, RNA in situ hybridization, as well as immunology and serology assays. RESULTS Laboratory results of our COVID-19 cohort show elevated inflammatory markers, abnormal coagulation values, and elevated cytokines IL-6, IL-8 and TNF. Autopsies revealed large pulmonary emboli in four cases. We report microthrombi in multiple organ systems including the brain, as well as conspicuous hemophagocytosis and a secondary hemophagocytic lymphohistiocytosis-like syndrome in many of our patients. We provide electron microscopic, immunofluorescent and immunohistochemical evidence of the presence of the virus and the ACE2 receptor in our samples. CONCLUSIONS We report a comprehensive autopsy series of 67 COVID-19 positive patients revealing that this disease, so far conceptualized as a primarily respiratory viral illness, also causes endothelial dysfunction, a hypercoagulable state, and an imbalance of both the innate and adaptive immune responses. Novel findings reported here include an endothelial phenotype of ACE2 in selected organs, which correlates with clotting abnormalities and thrombotic microangiopathy, addressing the prominent coagulopathy and neuropsychiatric symptoms. Another original observation is that of macrophage activation syndrome, with hemophagocytosis and a hemophagocytic lymphohistiocytosis-like disorder, underlying the microangiopathy and excessive cytokine release. We discuss the involvement of critical regulatory pathways.


Asunto(s)
Embolia Pulmonar , Síndrome de Activación Macrofágica , Enfermedades Vasculares , Síndrome Respiratorio Agudo Grave , Microangiopatías Trombóticas , Linfohistiocitosis Hemofagocítica , Trastornos Mentales , Virosis , COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA